Технический раздел

Статус
В этой теме нельзя размещать новые ответы.
#1


История создания турбокомпрессоров
(ЧАСТЬ 1)

Двигателестроители, начиная с Отто и Дизеля, всегда мечтали о максимально возможном наполнении цилиндров воздухом. Но двигатель должен был бы сам себя «надувать» сжатым воздухом, чтобы не было лишних затрат энергии. Чем больше в цилиндрах воздуха, тем больше энергии, что в итоге выливается в значительном приросте мощности и крутящего момента.

Естественно изобретатели ухватились за идею использовать энергию выхлопных газов для нагнетания воздуха. Хотя все это звучит просто, но прошло много лет до того как эту идею смогли реализовать – турбокомпрессоры появились спустя сто лет после изобретения двигателя внутреннего сгорания.

Первым кто описал и запатентовал принцип работы турбокомпрессора был Альфред Бюхли в 1905 году. Инженеры никогда не сталкивались с нехваткой воздуха, ведь даже совсем небольшой компрессор может передать большое количество воздуха. Проблема была в другом, а именно в том, как контролировать давление наддува между переключениями передач. Первоначально турбокомпрессоры устанавливались на самолеты и корабли. На этих транспортных средствах обороты двигателя изменяются плавно. Затем стали устанавливать турбокомпрессоры на дизельные двигатели. В 50 годы нашего столетия стали устанавливать турбины на гоночные автомобили, где скорость была примерно постоянна. В те же годы инженеры General Motors оснастили турбодвигателями и серийные модели, но тут же обнаружились «подводные камни». При разгоне с малых оборотов компрессор реагировал очень медленно. Это я вление назвали «Турболагом» или «Турбоямой». На больших оборотах турбонагнетатели давали слишком большое давление.
К концу 60-х годов инженер из Швейцарии Михаэль Мэй выдвинул идею, о том, что турбокомпрессоры нужно делать маленьких размеров, тогда они будут подавать меньшее количество воздуха с одной стороны, а с другой стороны маленький агрегат имел малый вес, и поэтому обладал меньшей инертностью и быстрее реагировал на изменение скорости.

В это же время фирма Porsche тоже заинтересовалась идеей турбокомпрессора. Они совместно с фирмой ККК в начале 70-х годов и положили начало эры турбокомпрессоров в автомобилестроении. В турбодвигателях при нажатии на педаль акселератора давление должно было резко возрастать, а при отпускании педели – резко падать. Поступили следующем образом: когда давление становилось большим выхлопные газы перепускались мимо турбины. Когда дроссельная заслонка закрывается, стравливаются выхлопные газы. При этом крыльчатка турбокомпрессора еще вращается, но не в полную силу. Когда же давление наддува снова будет необходимо, перепускной клапан закрывается, и турбина быстрее раскручивается.
Было еще много других проблем, например температура в турбокомпрессорах бензинового двигателя достигает 1000 градусов, но все эти проблемы были решены, и в наше время турбокомпрессоры честно служат на пользу человечества.

Есть ли тот кто ни когда не слышал волшебное слово "турбо"? Звенит в ушах, воображение рисует нечто мощное, стремительное. На этом фоне как-то скучно звучат термины "механический компрессор" или, хуже того - "объемный нагнетатель". На деле – совсем не так.

Какой водитель не мечтал о том что бы в его автомобиле жило намного больше лошадок под капотом чем есть.. Благо последнее время данную проблему довольно легко решить, вариантов увеличения мощности двигателя, да и комплектующих полно. В нашу жизнь плотно вошло слово "тюнинг" и многие тюнинговых ателье берутся сделать с вашим любимцем все, что угодно.

В русский язык с давних пор вошел термин "форсировка" (от английского force - сила), который означает "увеличение мощности". Стоит вспомнить, что мощность двигателя напрямую связана со следующими его основными параметрами:

рабочим объемом цилиндров;

количеством подаваемой топливо-воздушной смеси;

эффективностью ее сжигания;

энергетической "заряженностью" топлива.

Стоит заметить, что есть ещё несколько вариантов увеличения мощности - полировка впускного/выпускного каналов, применение фильтров нулегого сопротивления, применение прямоточной системы выхлопа, модификация параметров программного обеспечения (чип-тюнинг), расточка цилиндров или переходе с бензина на "нитру" (закись азота).

Такие решения позволяют увеличить мощность, но не существенно, разве что это не касается "нитроса". Главное решение одно - увеличение подачи топливо-воздушной смеси. Чем больше топлива сжигается в единицу времени, тем выше мощность мотора. Но бензин не горит "просто так", для этого нужен воздух (кислород) - во вполне определенных количествах. Чтобы увеличить подачу топлива, вначале придется соответствующим образом усилить подачу воздуха.

Сам мотор с этой задачей не справится - его вероятности по всасыванию воздуха ограничены (даже при применении фильтров с нулевым сопротивлением). Поэтому и появились те самые "турбо", "компрессоры" и "нагнетатели". Они разные, и дают разнообразные результаты.



История создания турбокомпрессоров
(ЧАСТЬ 2)

Немного теории:

Представим себе такт впуска двигателя внутреннего сгорания: мотор работает как насос, к тому же весьма неэффективный - на пути воздуха (горючей смеси) находится воздушный фильтр, извилины впускных каналов, в бензиновых моторах - еще и дроссельная заслонка. Все это снижает наполнение цилиндра. Что же сделать, чтобы его повысить? Поднять давление перед впускным клапаном - тогда горючей смеси (для дизелей - воздуха) в цилиндре будет больше. Энергия сгорания заряда с большим количеством топлива, само собой, повысится; вырастет и общая мощность двигателя.

Для этих целей существует много решений, но распространение получили не многие.

1. Роторный нагнетатель Roots. Создан Фрэнсисом Рутсом еще в 1860 году. Первоначально применялся как вентилятор для проветривания промышленных помещений. Суть : две вращающиеся в противоположных направлениях прямозубые "шестерни", помещенные в общий кожух (напоминает современный маслонасос). Объемы воздуха в пространстве между зубьями шестерен и внутренней стенкой корпуса благополучно доставляются от впускного коллектора до выпускного. В 1949 году другой американский изобретатель - Итон - усовершенствовал конструкцию: прямозубые "шестерни" превратились в косозубые роторы, и воздух теперь перемещался не поперек их осей вращения, а вдоль. Принцип работы - воздух внутри агрегата не сжимается, а просто перекачивается в другой объем, отсюда и название - объемный нагнетатель, а не компрессор.

2. Спиральный компрессор Lysholm. Автор идеи - немецкий инженер Кригар, время рождения - конец позапрошлого века, первоначальное назначение - промышленное, сейчас известен под именем Lysholm благодаря работам шведского инженера Алфа Лизхолма, который в конце 30-х годов прошлого века приспособил конструкцию для автомобильного применения. Внешне - если не снимать кожух - очень похож на нагнетатель Roots. Отличия внутри. Вроде бы те же два ротора, вертящиеся навстречу друг другу перекачивают объемы воздуха вдоль осей, но сильно лихо закручены. Сечения роторов намного сложнее, они разные. Самое главное: шаг закрутки роторов меняется по длине, и при перемещении вдоль осей объем перекачиваемого воздуха в каждой ячейке уменьшается - воздух сжимается. Поэтому Lysholm - не просто нагнетатель, а чистой воды компрессор.

3. Центробежный компрессор (устоявшегося "фирменного" названия не имеет). В корпусе-улитке вращается крыльчатка сложной формы. Воздух затягивается по центру и отбрасывается по периферии, при этом благодаря действию центробежных сил происходит его сжатие. По этому это не просто нагнетатель, а тоже компрессор.

4. Турбокомпрессор, оно же турбонагнетатель. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от "турбо", пусть даже и "би...", и "твин...". Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель находится на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов, так сказать, по второй производной. Для данной конструкции присуща замедленная реакция на быстрый "подхват".

Механический нагнетатель/компрессор - роторный, спиральный или центробежный - имеет механический привод, который осуществляется ремнем от коленвала двигателя (иногда через промежуточные шкивы). Здесь главное, что бы обороты нагнетателя/компрессора жестко связаны с оборотами коленвала.

Нагнетатель Roots и компрессор Lysholm

Нагнетатель Roots, и компрессор Lysholm имеют линейные характеристики, обороты компрессора повышаются синхронно с оборотами коленчатого вала, пропорционально растет подача воздуха, и кривая крутящего момента двигателя, практически не меняя свою форму, размеренно перемещается вверх. У центробежного и турбокомпрессоров характеристики нелинейные - их производительность увеличивается с ростом числа оборотов. Поэтому установка того или иного агрегата по-разному меняет характеристики (кривые мощности и крутящего момента) двигателя.

Оба типа компрессоров весьма эффективны с самых низких оборотов, но Lysholm обеспечивает более плоскую характеристику на высших, у Roots ее спад начинается несколько раньше. К преимуществам Lysholm можно отнести и более высокий КПД, и лучшее соотношение габариты/масса, к тому же он меньше нагревается при работе. Рабочая частота вращения обычно 12-14 тыс. оборотов, но может доходить до 25 тыс. об./мин. (Стоит заметить что компания Mercedes- Benz одна из первых начала использовать компрессора в своих автомобилях, при чем предпочтение они отдали именно роторным конструкциям.)

Роторы Lysholm с их сложной формой требуют высочайшей точности изготовления - компрессоры этого типа появились на рынке заметно позже других. Главные их производители - шведские компании Lysholm и Autorotor. Известны потребителю фирмы Kleemann, Whipple и пр. в основном поставляют готовые комплекты на шведской основе, разработанные для конкретных двигателей. Комплекты включают интеркулер, систему привода, входной коллектор, переходники и разную мелочевку.









История создания турбокомпрессоров
(ЧАСТЬ 3)

Механический нагнетатель

Механические нагнетатели применялись в автомобильных двигателях еще в 30-е годы, тогда их чаще всего называли компрессорами. Сейчас этот термин обычно относят к турбокомпрессорам, о которых речь пойдет ниже. Конструкций механических нагнетателей довольно много, и интерес к ним разработчики проявляют до сих пор. На рисунках 1-4 представлены схемы некоторых устройств, принцип работы которых не требует дополнительных пояснений.

Есть конструкции и не совсем обычные. Одна их них - волновой нагнетатель Comprex (рис. 5) - принадлежит фирме Asea-Brown-Boweri. Ротор этого компрессора имеет аксиально расположенные камеры, или ячейки. При вращении ротора в ячейку поступает свежий воздух, после чего она подходит к отверстию в корпусе, через которое в нее попадают горячие отработавшие газы двигателя. При их взаимодействии с холодным воздухом образуется волна давления, фронт которой, движущийся со скоростью звука, вытесняет воздух в отверстие впускного трубопровода, к которому ячейка за это время успевает подойти. Поскольку ротор продолжает вращаться, отработавшие газы в это отверстие попасть не успевают, а выходят в следующее по ходу ротора. При этом в ячейке образуется волна разряжения, которая всасывает следующую порцию свежего воздуха и т. д.

Нагнетатель Comprex уже опробован несколькими автомобильными производителями, а Mazda использует его на одном из своих серийных двигателей с 1987 года.

Еще одна не совсем обычная конструкция - это спиральный, или G-образный (по форме буквы G, напоминающей спираль) нагнетатель. Идея запатентована еще в начале столетия, но из-за технических и производственных проблем на выпуск такого нагнетателя долго никто не решался. Первой, в 1985 году была фирма Volkswagen, которая применила его на двигателе купе Polo (1,3 л, 113 л. с.). В 1988 году появился более мощный нагнетатель G60, которым в течение нескольких лет комплектовались двигатели Corrado и Passat (1,8 л, 160 л. с.,), а Polo G40 выпускался вплоть до 1994 года.

Схематично (рис. 6) конструкцию G-образного нагнетателя можно представить в виде двух спиралей, одна из которых неподвижна и является частью корпуса. Вторая - вытеснитель - расположена между витками первой и закреплена на валу с эксцентриситетом в несколько миллиметров. Вал приводится от двигателя ременной передачей с отношением около 1:2.

При вращении вала внутренняя спираль совершает колебательные движения и между неподвижной (корпус) и обегающей (вытеснитель) спиралями образуются серпообразные полости, которые движутся к центру, перемещая воздух от периферии и подавая его в двигатель под небольшим давлением. Количество перемещаемого воздуха зависит от частоты вращения коленчатого вала двигателя.

Система имеет сравнительно высокий (около 65%) КПД. Трущихся частей почти нет, поэтому износ деталей незначителен. Установленный на двигателе Polo нагнетатель G40 (40 и 60 в маркировке нагнетателей Volkswagen - это ширина спиральных камер в миллиметрах) имеет внутреннюю степень сжатия 1,0; максимальное давление наддува составляет 0,72 бар. При номинальной частоте вращения ротора 10200 об./мин. за один оборот подается 566 см куб. воздуха, т. е. почти 6000 л/мин.

Схема управления механическим нагнетателем довольно проста (рис. 7). При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта - весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается - избыток воздуха возвращается на вход нагнетателя.

Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью всех, не только механических, систем наддува. При сжимании воздух, как известно, нагревается, а его плотность и, соответственно, количество кислорода в единице объема уменьшаются. Больше кислорода - лучше сгорание и выше мощность. Поэтому перед подачей в двигатель сжатый нагнетателем воздух проходит через охладитель, где его температура снижается.



История создания турбокомпрессоров
(ЧАСТЬ 4)

Турбокомпрессор/турбонагнетатель.

Турбокомпрессор, по большому счету - тот же центробежный компрессор, но с преимущественно иным приводом. Частота вращения может быть более 200.000 об./мин. Несомненный плюс: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же применяет энергию отработавших газов, следовательно, КПД увеличивает). Минус - инерционность: "вдавил" резко газ и жди, пока мотор наберет обороты, умножится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя - и наконец, "пойдет" воздух. Но с этим явлением, называемым "турбо-яма" (по-английски "turbo-lag", что правильнее было бы перевести как "турбо-задержка" или "турбо-пауза"), научились бороться...

Вследствие этого, кроме собственно агрегата наддува, под капотом "поселились" два перепускных клапана: один - для отработавших газов, а другой - чтобы перепускать излишний воздух из коллектора двигателя в трубопровод до компрессора. Этот клапан также управляется давлением во впускном коллекторе. Таким образом, частота вращения ротора турбины при сбросе газа уменьшается незначительно, и при последующем нажатии на педаль задержка подачи воздуха составляет десятые доли секунды – это время закрытия клапана.

Сегодня стали применять такой способ регулирования подачи воздуха, как изменяемый угол наклона лопаток компрессора. Идея давняя, а вот воплотить ее долго не могли; в качестве примера назовем новейший агрегат наддува "опелевских" дизелей "Экотек".

Еще одна проблема применения турбин - это их маленький срок жизни, хотя в последнее время удалось значительно увеличить это время. Частота вращения ротора турбины должна быть очень велика. До 150-200 тысяч об/мин. До последнего времени срок службы всего агрегата ограничивала именно долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, какие смазывались маслом под давлением. Изнашивание таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли не так давно, когда удалось создать подшипники с керамическими шариками. Сперва это сделали японские фирмы, а затем и шведский СКФ - и машины с такими подшипниками появились на дорогах. Однако достойно изумления не применение керамики - подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя не нужен! На очереди - металлокерамический ротор турбины, который примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции.

По своему воздействию на характеристику крутящего момента двигателя турбокомпрессор схож с механическим центробежным. Но "опосредствованная" система привода позволяет настраивать характеристики турбокомпрессора в более широком диапазоне, выравнивая изначальные дефекты кривой крутящего момента мотора. Турбины низкого и высокого давления на сравнительно "маломерных" двигателях Volvo, Volkswagen или Saab.

Что иметь отношение "битурбо" и "твинтурбо" вместо одной турбокомпрессорной установки используются две - параллельно (бывает и последовательно, но реже). Каждый ротор поменьше, полегче, менее инерционен, более отзывчив. И управлять диапазонами их работы при последовательном наддуве можно по- разному, добиваясь нужной конечной характеристики.

Ротор турбокомпрессора к сожалению нельзя сделать большим! И все потому, что чем больше диаметр турбины, тем выше ее момент инерции. Стало быть, даже если водитель при разгоне порезче надавит на педаль акселератора, быстрого ускорения все равно не получится: нужно будет ждать, пока турбина наберет соответствующие обороты. Следовательно, турбину следует сделать как можно мельче по диаметру. Но поступление воздуха зависит от окружной скорости лопаток, которая тем меньше, чем меньше диаметр ротора: Остается только умножать обороты, хотя и тут есть ограничение, на этот раз со стороны допустимых нагрузок на материалы. Вот и используют несколько турбин с меньшим диаметром в параллель.

Интеркулер:

Изобретатели всего мира постоянно придумывают новые устройства для повышения производительности турбокомпрессора. Например - интеркулер, он же промежуточный охладитель.
При сжатии ух нагревается, и его плотность уменьшается. Таким образом в цилиндры закачивается воздуха меньше, соответственно качество газообмена и КПД двигателя снижаются. Необходимо охладить воздух, для этого используется интеркулер. Существует два основных вида - без промежуточного теплоносителя и с промежуточным теплоносителем. В первом случае воздух, поступающий в двигатель, охлаждается набегающим потоком воздуха. Такая система реализуется с помощью медных труб большого диаметра, распологающихся перед радиатором охлаждения двигателя. Система начинает работать с 30 км/ч, и не требует сложного оборудования, но очень громоздка, и чаще всего применяется на грузовиках. Во втором случае - с помощью теплоносителя (тосол, например) по системе радиаторов и с электоприводным насосом. Эта система поддается регулированию и является самой эффективной и компактной (и сложно-дорогой). Промежуточный охладитель, или по-английски интеркулер, не только увеличивает мощность двигателя, но и снижает тепловые нагрузки, уменьшает выбросы окислов азота и расход топлива.
Эффективность интеркулера выражается в его способности понижать температуру входящего потока. Если интеркулер охлаждает воздух до температуры окружающей среды - его эффективность составляет 100%, но чаще всего этого достигнуть не возможно. Поэтому большинство интеркулеров работают с эффективностью 70% - и это очень неплохо

Ответим на 5 самых распространенных вопросов о компрессорах.

Вспомните, как вы ощущали себя, выполнив несколько десятков отжиманий или пробежав три километра кросса. Примерно то же самое испытывает двигатель вашей машины, когда вы едете в гору или "летите" по шоссе.

Все больше теперешних автомобилей получают "живительный" воздух, придающий им дополнительную "силу", от турбокомпрессора. Хотя агрегат использовался в автомобильных, авиационных и других двигателях на протяжении почти всего века, всего лишь около десяти лет назад турбокомпрессоры еще считались лишь "игрушкой" для "экзотических" и "особо мощных" машин.

В совокупности с растущем вниманием потребителя в более высокой и экономичной мощности современных автомобилей, турбокомпрессоры аргументировали свою высокую эффективность и практичность. Одновременно с низкими, "прилизанными" аэродинамическими формами кузовов современных машин их двигатели стали меньше, а упор стал делаться на топливную экономичность.

Концепция турбированных систем такова: турбина представляет собой воздушную помпу приводящуюся в движение выхлопными газами. За счет этого увеличивается давление воздушного потока влетающего в двигатель, в следствии чего воздушно-топливная смесь попадает в двигатель и происходит повышение мощности.

В отдельных автомобильных двигателях атмосферное давление является максимально возможным давлением при котором воздушный поток может попадать в двигатель. Количество сжигаемого топлива в цилиндрах ограниченно из-за количества воздуха попадающего в двигатель при атмосферном давлении (такие моторы не турбируются).

Двигатель при одних о тех же оборотах может вырабатывать больше мощности если в цилиндры будет попадать больше воздушно-топливной смеси. Большее количество воздушно-топливной смеси дает большее давление в цилиндре и большую отдачу. Это один из путей увеличения мощности двигателя. Турбированные двигатели производят мощности на 30-60% больше чем такой же двигатель без турбины.

Турбонагнетатель это воздушный компрессор, который вбирает воздух после чего сжимает его и вдувает его в двигатель (см. рисунок 1 турбо- компрессора и на нем #1). Компрессор раскручивается до 100.000 об/ мин. с помощью турбины (см. фото турбо-компрессора и на нем #2). Турбина с компрессором объединены с помощью вала (см. фото турбо- компрессора и на нем #3). Когда турбина начинает вращаться она вращает компрессор через вал. Турбина вертится за счет выхлопных газов идущих из двигателя, после чего выхлопные газы попадают в выхлопную систему.

Как уже сказано выше турбокомпрессор увеличивает эффективную мощность двигателя на 30-60 процентов. То есть, после его установки 4-цилиндровый агрегат обеспечивает силовые параметры 6- и даже 8-цилиндровых двигателей, и все это при сохранении высокой экономичности



История создания турбокомпрессоров
(ЧАСТЬ 5)

КАКИМ ОБРАЗОМ ТУРБОКОМПРЕССОР УВЕЛИЧИВАЕТ МОЩНОСТЬ ДВИГАТЕЛЯ?

Мощность, развиваемая двигателем, напрямую зависит от количества воздуха и смешанного с ним топлива, которое подается в двигатель. Чтобы увеличить мощность двигателя, следует увеличить количество подаваемого воздуха и топлива. Подача большего количества топлива не даст эффекта до тех пор, пока не появится достаточное для его сгорания количество воздуха, в противном случае образуется избыток несгоревшего топлива, что приводит к перегреву двигателя, который к тому же при этом сильно дымит.

Турбокомпрессор умножает мощность двигателя путем подачи в него необходимого количества сжатого воздуха, достаточного для абсолютного сгорания увеличенной дозы топлива. Следовательно, при прежнем рабочем объеме и тех же оборотах мы получаем большую мощность. Кроме того, улучшается процесс сгорания, что увеличивает характеристики двигателя в широком диапазоне чисел оборотов.

КАК РАБОТАЕТ ТУРБОКОМПРЕССОР?

Стержневыми частями любого турбокомпрессора являются турбина и центробежный воздушный насос, соединенные между собой при помощи общей жесткой оси. Оба этих элемента вращаются в одном направлении и с одинаковой скоростью (причем огромной - примерно 100.000 об/мин!). Энергия потока проработавших газов, которая в обычных двигателях не используется, преобразовывается здесь в крутящий момент, приводящий в действие компрессор.

Исходящие из цилиндров двигателя отработавшие газы передаются на крыльчатку турбины, которая перерабатывает их кинетическую энергию в механическую энергию вращения (крутящий момент). Компрессор (он представляет собой похожую крыльчатку, установленную на другом конце оси) затягивает свежий воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. Количество топлива, которое можно смешать с воздухом, при этом можно увеличить, что позволяет двигателю развивать наибольшую мощность.

Бытует также множество других конструкций турбокомпрессоров.

НА КАКИЕ ДВИГАТЕЛИ МОЖНО УСТАНОВИТЬ ТУРБОКОМПРЕССОР?

Турбокомпрессором может быть оснащен любой двигатель внутреннего сгорания: дизельный, бензиновый или работающий на газе, имеющий жидкостное или воздушное охлаждение. Турбокомпрессоры применяются как на двигателях с большим рабочим объемом (судовых, тепловозных и стационарных), так и на двигателях грузовых и легковых автомобилей. Идет ли речь о двухтактном или о четырехтактном двигателе – не имеет значение.

Сегодня практически все крупные дизельные двигатели мощностью более 150 кВт, применяемые в промышленности, судостроении, на дорожно-строительных работах, оснащаются турбокомпрессором (иногда даже несколькими).

В поле деятельности автомобильного транспорта теперь практически любой дизельный двигатель мощностью свыше 80 кВт стандартно оснащается турбокомпрессором. Даже в секторе малых автомобилей с дизельным двигателем наблюдается их распространение.

Переход турбокомпрессоров на бензиновые двигатели был более тяжелым, но ускорился благодаря опыту их использования на кольцевых автогонках и авторалли. Расширение производства материалов, выдерживающих высокие температуры, улучшение качества моторных масел, использование жидкостного охлаждения корпуса турбокомпрессора, электронное управление регулирующими клапанами - все это содействовало тому, что эти агрегаты начали применяться на мелкосерийных бензиновых двигателях, что, в соединении с впрыском топлива и электронным зажиганием, позволило добиться высоких характеристик.

4. НУЖДАЕТСЯ ЛИ ТУРБОКОМПРЕССОР В ОБСЛУЖИВАНИИ?

Нет. Но так как он мажется маслом из системы смазки двигателя, то проблемы с этой системой "отзовутся" и на турбокомпрессоре. Обычно недостаток масла приводит к его большому износу и выходу из строя.

Признаками неисправности турбокомпрессора могут быть: пониженная мощность двигателя, черный или синеватый дым из выхлопной трубы, увеличенный расход моторного масла или шум при работе турбокомпрессора.

Примечание. Выше перечисленные признаки не всегда указывают на неисправность турбокомпрессора - прежде всего нужно проконтролировать исправность двигателя и его навесных агрегатов.

На двигателе работающем без сбоев, который своевременно и качественно обслуживается, турбокомпрессор в состоянии работать долго и качественно.

Ремонт турбокомпрессора(даже незначительный) должен осуществляться только в предназначенной для этого мастерской, так как для этого требуются специальные знания, умения и оборудование. Кроме того, при выполнении любых работ с агрегатом должна быть обеспечена идеальная чистота, так как даже одна песчинка, оказавшаяся в турбокомпрессоре, может вывести его из строя.

КАК СОХРАНИТЬ ЖИЗНЬ ТУРБОКОМПРЕССОРУ?

Это элементарно. Необходимо лишь соблюдать рекомендации производителя автомобиля. По данным одной крупной аналитической фирмы, только около 30% владельцев "турбированных" машин исполняют эти рекомендации. Проблемы с турбокомпрессором возникают в основном в результате пренебрежения этими правилами. А они следующие:

1.После запуска холодного двигателя по крайней мере 5 минут не включайте высокие обороты, чтобы масло хорошо смазало турбокомпрессор.

2.Перед выключанием двигателя после большой нагрузки либо продолжительной поездки, оставьте его поработать не менее минуты на холостых оборотах. Если сразу заглушить двигатель, то турбокомпрессор будет некоторое время совершать обороты без смазки, поскольку масляный насос прекратит работу. При этом повреждаются подшипники и кольца агрегата.

3.Не забывайте систематически заменять моторное масло и масляный фильтр. Помните, что высокая температура, возникающая при работе турбокомпрессора, сбавляет эффективность и долговечность масла. Поэтому заливайте только то масло, которое подходит для "турбированных" двигателей.

Придерживаясь этих правил, вы обеспечите продолжительную и надежную работу турбокомпрессора. Помните "золотое" правило: болезнь легче предупредить, чем излечить.

ПРЕИМУЩЕСТВА ТУРБОКОМПРЕССОРНОГО ДВИГАТЕЛЯ:

Баланс "масса/мощность" у двигателя с турбокомпрессором выше, чем у атмосферного.

Двигатель с турбокомпрессором наиболее меньших размеров, чем атмосферный двигатель той же мощности.

Кривая крутящего момента двигателя с турбокомпрессором может быть лучше приспособлена к специфическим условиям эксплуатации. При этом, например, водитель тяжелого грузовика может реже переключать передачи на горной дороге, и само вождение будет более "мягким".

Двигатель с турбокомпрессором «не замечает» перемену высоты, в то время, когда атмосферный на большой высоте теряет мощность.

Двигатель с турбокомпрессором обеспечивает оптимальное сгорание топлива. Подтверждением тому служит уменьшение потребления топлива грузовиками на больших пробегах.

Поскольку турбокомпрессор улучшает сгорание топлива, он также способствует понижению токсичности отработавших газов.

Двигатель, оснащенный турбокомпрессором, работает более устойчиво, чем его атмосферный аналог той же мощности, а так как он мал по размеру, то производит мало шума, а так же играет также роль своеобразного глушителя в системе выпуска.
 
#2
Немалый труд найти нормальный материал.

Собственно вопрос. Я не сильно углублялся в принцыпы работы турбо, но мне почему-то говорили что турбина работает не от выхлопа, а от давления масла... Хотя какое может быть (или есть) давление масла в моторе что бы крутить турбину за 100.000 об/мин (под пластмассовой маслозаливной крышкой) и при том что оно (масло) стекает от головки в поддон самотеком... Не спорю, давление масла есть, но его скорее всего не достаточно для этого. Даже спорил, с теми людьми, что турбина работает от выхлопа, а те стояли на своем, что от масла, так и меня не переубедили так как не навели агрументов. Или я не прав.
 
#5
Дабы не плодить темы, заливаю технически-интересные вещицы сюда.



#BLOW OFF (блоу-офф)
Теория, и принцип работы

BLOW OFF - перепускной клапан (переливной клапан) — это устройство, предназначенное для поддержания давления среды на требуемом уровне путём перепуска её через ответвление трубопровода.

Среда может быть жидкая или газообразная.
Перепускной клапан поддерживает давление в системе путём непрерывного отвода жидкости (газа), чем он отличается от предохранительного клапана, который ограничивает повышение давления в системе сверх заданного путём однократного или периодического отвода жидкости (газа) из системы.

Конструктивно перепускной и предохранительный клапаны могут не отличаться друг от друга.

Также, как и редукционный клапан, перепускной клапан поддерживает постоянство давления в системе. Однако перепускной клапан поддерживает постоянным давление на входе в клапан ("до себя"), а редукционный клапан поддерживает постоянство давления на выходе ("после себя").

Перепускной клапан и турбонаддув ДВС:

Перепускной клапан (blow-off) используется для сброса избыточного давления создаваемого во впускном коллекторе в атмосферу. Так же, существует вариант сброса избыточного давления в начало тракта впуска (bypass).

Избыточное давление образуется вследствие понижения передачи, при сбросе газа.

Перепускной клапан в системе подачи топлива устанавливается рядом с топливным насосом, а иногда и объединяется с ним. Он предназначается для слива избыточного топлива, подаваемого топливным насосом, обратно в топливные баки.

Таким образом перепускной клапан обеспечивает одинаковое давление в топливо-подкачивающей системе независимо от режима работы двигателя.

Соленоидный клапан работает вместе с перепускным перекрывая его, таким образом, герметизируя цепь высокого давления. Перепускной клапан в системе охлаждения двигателя внутреннего сгорания
Перепускной клапан предназначен для возвращения жидкости из расширительного бака в радиатор охлаждения. Это необходимо потому что при охлаждении антифриз уменьшается в объёме и в системе образуется разрежение.





 
#6
#Кулачковая #трансмиссия.
Назначение

Для достижения высоких динамических и скоростных характеристик автомобиля мало улучшить мотор. Чтобы реализовать его возросшие возможности, нужна и соответствующая коробка передач. Такая коробка должна обладать высокой скоростью переключения, другими передаточными числами, способностью выдерживать высокие нагрузки. Этим требованиям в полной мере отвечают кулачковые КПП, применяемые на всех спортивных автомобилях. Конструкция На первый взгляд может показаться странным, но для того, чтобы изготовить «гоночную» коробку, потребовалось не усложнить, а, наоборот, упростить конструкцию обычной механической КПП. В первую очередь избавились от синхронизаторов. Элемент, облегчающий переключение передач, делает это, по спортивным меркам, недопустимо долго. Кроме того, он слишком хрупок. Вместо синхронизаторов с множеством мелких зубьев зацепление шестерен и муфт обеспечивают имеющиеся на их торцах выступы – кулачки. Количество кулачков невелико – не более 7 на каждой шестерне (муфте), поэтому они входят в зацепление с большим «запасом» по ширине. При их соприкосновении раздается хорошо различимое «клацанье».

Кулачки воспринимают всю ударную нагрузку,
защищая зубья шестерен от поломок при жестких переключениях. Сами шестерни по размеру значительно больше, чем в обычной КПП. Кроме того, применяются не косозубые, а прямозубые шестерни. Чем это вызвано? Прямозубые шестерни имеют меньше потерь на трение (что повышает КПД), проще в изготовлении и не создают осевых нагрузок на валы КПП. Однако они способны передавать меньший крутящий момент по сравнению с косозубыми шестернями такого же размера. Поэтому их и изготавливают большего диаметра. Для более эффективного разгона в «спортивных» коробках применяют сближенные передаточные числа КПП и более длинную первую передачу. В стандартных коробках первая передача выбирается «короткой» из расчета движения в тяжелых дорожных условиях, а не для динамичного разгона. Механизм переключения у кулачковых КПП бывает поисковый или секвентальный (последовательный). Первый практически ничем не отличается от стандартного. Секвентальный позволяет переключать передачи только последовательно, ступень за ступенью, вверх или вниз. В гоночных условиях он намного удобнее и быстрее поискового. Секвентальный механизм в управлении проще, но технически значительно сложнее. Для переключения достаточно сдвинуть рычаг вперед или назад, а номер включенной в данный момент передачи отображается на дисплее. Вилки передач двигает специальный вал, имеющий борозды волнообразной формы. С каждым толчком рычага он прокручивается на определённый градус, при этом вилка, продвигаясь по борозде, включает передачу или «нейтралку».

Другой вариант - при «толчке» рычага происходит поворот специальной оси с кулачками на определенный угол. Один из кулачков сдвигает вилку и выключает передачу, а другой сдвигает другую вилку, которая вводит в зацепление муфту с шестерней следующей передачи. Рычаг переключения делают максимально длинным, чтобы приблизить его к рулю – это позволяет водителю дополнительно сократить время на переключение. Рычаг снабжают механической блокировкой, предохраняющей от случайного включения нейтрали или заднего хода. Для ее отключения необходимо нажать кнопку или скобу. Добиться еще большего выигрыша времени позволяют подрулевые переключатели и гидропривод включения передач. При таком варианте время переключения сокращается до 150 миллисекунд и, кроме того, «гидравлика» делает это более «нежно», продлевая жизнь шестерням. На высшей ступени в иерархии «секвенталок» находятся полуавтоматические КПП. Задача водителя – только вовремя задать момент перехода на другую передачу, а самим процессом переключения управляет автоматика – включает и выключает сцепление, добавляет или сбрасывает «газ» и двигает нужные вилки. Особенности вождения В автомобилях с кулачковой КПП педаль сцепления используется в ходе гонки только для трогания с места. При езде переключение передач производится либо вообще без выжима сцепления, либо с неполным выжимом. Пилот при этом лишь немного отпускает педаль «газа». Вообще, спортсмены пользуются педалями совершенно по-другому, чем обычные водители: правая нога у них постоянно управляет акселератором, а левая - попеременно сцеплением или тормозами. В автомобилях с секвентальной КПП, оборудованной гидроприводом переключения, и полуавтоматической КПП, педали сцепления вообще нет. Водителю нужно только выбрать передачу, толкнув рычаг (или подрулевой лепесток) и в нужный момент резко нажать или отпустить педаль акселератора – таким образом автоматике подается команда на переключение. Если же водитель не выбирал передачу, то рост оборотов двигателя не приводит к автоматическому переключению вверх. Автоматически включается только первая передача – для трогания с места достаточно нажать на акселератор. Преимущества и недостатки

Основное преимущество кулачковых КПП, ради чего, собственно, они и создавались – высокая скорость переключения передач (в три раза быстрее, чем в обычной МКПП). Из этого следует и еще одно преимущество – обороты двигателя за время переключения не успевают упасть, следовательно, разгон происходит намного интенсивнее. Это особенно важно для моторов с турбонаддувом, рабочий диапазон у которых сравнительно узок. Кулачковые КПП выдерживают значительно большие нагрузки по сравнению с синхронизированными, имеют меньший вес и способны передавать намного больший крутящий момент. Механизм переключения работает четко, не допуская «вылета» передач. К недостаткам кулачковых КПП относят небольшой ресурс (как правило, после каждой гонки ее перебирают), высокую цену и повышенную шумность при работе.

Дотошный читатель, возможно, спросит: «А как же сочетается сказанное о высокой надежности и маленьком ресурсе?» Дело в том, что стандартная коробка в условиях гонки не выдержала бы и половины дистанции, и в этом смысле кулачковая КПП намного надежнее. А вот ресурс, в обычном понимании, когда узлы служат без ремонта годами, у кулачковой КПП существенно меньше. Жесткие переключения приводят к быстрому износу кулачков и загрязнению масла металлическими частицами. Использование в тюнинге У начинающих «тюнингеров» часто возникает вопрос: можно ли кулачковую коробку установить на обычный автомобиль? Ответ однозначный – нет. То есть, с технической точки зрения это возможно, но вот с практической – не имеет смысла. При обычной (не гоночной) езде для продления срока службы коробки необходимо будет пользоваться педалью сцепления при переключениях. А так как кулачковая коробка не имеет синхронизаторов, то переключаться нужно с перегазовкой при переходе на нижнюю передачу, и с двойным выжимом сцепления при переходе на высшую. Это требует тренировки и чувства двигателя – наверняка сломаете зубья не одной шестерне, пока не приобретете прочные навыки. Но даже и имея их, такая езда будет весьма утомительной, особенно в городе. Еще больше неудобств доставляет в обычных дорожных условиях КПП с секвентальным механизмом переключения. Ведь чтобы переключиться, например, на несколько ступеней вниз, нужно будет соответственно сделать несколько перегазовок. А установка полуавтоматической секвентальной коробки на обычный автомобиль вряд ли будет оправдана с экономической точки зрения. Из всего сказанного делаем вывод: установка кулачковой КПП (или кулачкового ряда на стандартную КПП) на ваш автомобиль будет оправдана лишь в том случае, если вы готовите его к серьезным соревнованиям. Если же вы хотите улучшить динамические характеристики для обычной езды, проще установить «спортивные» ряды КПП и главную пару дифференциала.



 
#7
#Устройство #генератора #автомобиля.

Строение генератора автомобиля представляет собой совокупность отдельных элементов собранных в одном корпусе.

1.Корпус генератора является одновременно и основанием для статорной обмотки. Выполнен из легко сплавных металлов (чаще дюралюминий), и имеет «окна» для лучшего охлаждения во время работы. В задней и передней частях корпуса расположены подшипники для крепления на них ротора.

2.Статорная обмотка генератора выполнена из медного провода и уложена в пазах сердечника. Сердечник выполнен в виде круга и изготавливается из металла с улучшенными магнитными характеристиками (трансформаторное железо). Поскольку генератор автомобиля является трехфазным производителем энергии, поэтому статор имеет три обмотки, соединенные между собой треугольником. В местах соединения фазных обмоток к ним подключается выпрямительный мост. Провод для изготовления фазных обмоток имеет двойную термоустойчивую изоляцию, чаще всего применяется специальный лак.

3.Ротор представляет собой электромагнит и имеет одну обмотку. Обмотка располагается на валу ротора. Сверху обмотки ротора расположен сердечник из ферро магнитного материала. Диаметр сердечника на 1,5-2 мм меньше диаметра статора. Для подачи напряжения управления с реле-регулятора на обмотки ротора, применяются медные кольца, которые располагаются на валу и соединены с обмоткой ротора посредством графитовых щеток. Реле-регулятор, выполняет функцию контроля и регулировки напряжения на выходе генератора. Выполнен в виде электронной схемы и имеющий выходы к щеткам.

4.Реле-регулятор может устанавливаться как непосредственно в корпусе генератора, в этом случае регулятор выполняется в одном корпусе со щетками. Или отдельно от генератора, тогда щетки устанавливаются на щеткодержатель.

5.Выпрямительный мост имеет шесть диодов с прямым током более 40 Ампер. Диоды располагаются на токопроводящих основаниях (плюсовом и минусовом), попарно и соединены по схеме Ларионова. Соединение по этой схеме позволяет на выходе получить постоянное напряжение из трёхфазного переменного. В народе выпрямительный мост именуется «подковой», потому, что токопроводящие основания диодов для удобного расположения в корпусе, имеют вид подковы.

В основу работы автомобильного генератора положен принцип порождения переменного электрического напряжения в обмотках статора под воздействием постоянного магнитного поля, которое образуется вокруг сердечника ротора. Двигатель приводит в действие ротор генератора при помощи ременной передачи. На обмотку возбуждения (ротора) подается постоянное электрическое напряжение, достаточное для образования магнитного потока. При вращении сердечника вдоль обмоток статора, в последних наводится ЭДС. Сила магнитного потока регулируется реле-регулятором, увеличением или уменьшением подаваемого напряжения на щетки, и зависит от нагрузки, снимаемой с плюсовой клеммы генератора. Напряжение на выходе генератора колеблется в пределах 13,6 в летнее время и 14,2 в зимний период (для реле-регуляторов у которых имеется встроенный контроль температуры окружающего воздуха). Такого напряжения достаточно для дозаряда аккумулятора и поддержания его в заряженном состоянии. Бортовая сеть так же питается от клеммы генератора автомобиля и включена параллельно аккумулятору.



 
#8
#Интеркулер. Принцип работы

Все японские турбовые автомобили с завода комплектуются интеркулерами (охладителями воздуха), но они, как правило, находятся либо под капотом, либо в крыле, то есть, не являются фронтальными (находящимися в переднем бампере автомобиля для лучшего обдува). Исключениями, пожалуй, являются GTR и Evo. У Тойот с этим дела обстоят похуже. В этой статье мы постараемся осветить плюсы и минусы установки фронтального интеркулера (FMIC - front mount intercooler).

Не секрет, что турбина сжимает воздух, создавая давление и тем самым она его нагревает до определенной степени, зависящей от атмосферного давления, температуры воздуха и т.д. Чем жарче температура за окном, тем больше ваша турбина нагревает воздух, поступающий во впускной коллектор. Чем больше воздух нагревается, тем меньше его плотность и наличие молекул кислорода, тем меньше поступает бензина в смесь, тем меньше мощность.

Стандартные подкапотные или "крылатые" интеркулеры имеют сравнительно небольшую площадь и плохо обдуваются, особенно подкапотные, так как они, кроме всего прочего, еще и нагреваются от двигателя. Все это усугубляется в жаркие летние месяцы - основное время для гонок. Поэтому, если машина используется для драйва, гонок и минимизация потерь мощности жизненно важна, то установка фронтального интеркуллера становится необходимостью.

Интеркулеры выбираются под определенную мощность, соответствующую вашему автомобилю. Но, как правило, лучше это делать с запасом в 100-200 л.с. На лаг это никак не влияет, зато вам уж точно удастся избежать ненужных потерь. Например, на авто 300 л.с. имеет смысл ставить интеркулер годный до 500 л.с. и т.д. Трубы и патрубки подбираются обычно соответствующие диаметру дроссельной заслонки впускного коллектора или же входному отверстию впускного коллектора в случае если дроссельных заслонок несколько. Схема подключения в идеале должна быть таковой, чтобы длина патрубков была как можно короче. Диаметр труб должен утолщаться по мере удаления от турбины и вход в интеркулер желательно ровняться диаметру дроссельной заслонки, также как соответственно и выход.

Очень желательно, чтобы трубы, идущие под капотом в зонах потенциального нагрева (от турбин или двигателя) изолировались теплонепроводящими материалами.

Сам интеркулер лучше всего размещать в переднем бампере спереди от радиатора кондиционера или основного радиатора двигателя. Часто приходится подрезать бампер для того, чтобы как можно большая площадь интеркулера обдувалась встречным потоком воздуха. Перед интеркулером также желательно ставить мелкую сетку, чтобы его не побили камни и прочие предметы, часто попадающие в автомобиль на наших "прекрасных" дорогах.

Грамотно установленный фронтальный интеркулер сразу же повлияет на мощность вашего автомобиля. Плотность воздуха возрастет, количество кислорода в нем увеличится, станет более богатой смесь и соответственно повысится мощность. На разных автомобилях и конфигурациях процент прибавки различен, но даже на стандартной Супре, к примеру, можно ожидать как минимум 30 л.с., а то и все 50. Если автомобиль подвергается бустапу, то фронтальный интеркулер - вещь просто необходимая.





 
#9
Для общего развития

№1 изображена свеча, вывернутая из двигателя, работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему: это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

Фото №2 - типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора, угла опережения зажигания или неисправностьсистемы впрыска), засорение воздушного фильтра.

Фото №3 - наоборот, пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов.

На фото №4 юбка центрального электрода свечи имеет характерный красноватый оттенок. Этот цвет можно сравнить с цветом красного кирпича. Покраснение вызвано работой двигателя на низкокачественном топливе, содержащем избыточное количество присадок, которые имеют в своем составе металл. Длительное использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

На фото № 5 свеча имеет ярко выраженные следы масла, особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки имеет обыкновение после запуска "троить" некоторое время, а по мере прогрева работа стабилизируется. Причина этого - неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Фото № 6 - свеча вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла, смешанного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого - разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель "троит" уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один - ремонт.

Фото № 7 - полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованая свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное, на что можно надеяться, так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста - сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное синее дымление, запах выхлопа похож на мотоциклетный

 

dim_on13

Старожил
#11
зря только все в одну кучу. не комильфо
можно было бы отдельными темами куда-нибудь в ФАК или еще куда
 
#13
#Кастер - угол продольного наклона оси поворота. Положительный кастер способствует устойчивости транспортного средства на поверхности трассы, но только при направлении вектора движения по прямой. Также, при положительном кастере, нижняя часть оси машины, самопроизвольно, «перекидывает» баланс на перед. Стоит также отметить, что избыточный кастер, наоборот, может довольно сильно затруднить управление автомобилем.

Контрруление – представляет собой разновидность корректирующего руления, служащего для управления автомобиля в управляемом скольжении. Выполняется при помощи резких, последовательных поворотов рулевого колеса в сторону противоположенную вектору движения, идущего в занос автомобиля.




 
#14
Что такое #турбо-кит #turbokit

Автомобильные технологии в последнее время здорово продвинулись, поэтому можно уверенно сказать, что оснастить турбонаддувом можно любой атмосферный двигатель, сохранив при этом его надежность.

С точки зрения классификации все турбокиты можно разделить на две категории: Upgrade-системы и Null-системы. Первые предназначены для дальнейшего увеличения мощности автомобилей уже изначально оснащенных турбиной или компрессором. Вторые – устанавливаются на атмосферные моторы.

Монтаж турбокита выглядит так: взамен выпускного коллектора устанавливается другой, с фланцем для турбины (и внешнего клапана сброса избыточного давления, если требуется достижение большой мощности), затем на него „вешают” турбину. Вход „горячей улитки” соединяют с выпускной системой (измененной штатной либо полностью новой). Вход нагнетающей (компрессорной) „улитки” присоединяют к воздушному фильтру, а выход, через который воздух под давлением нагнетается в мотор, – к интеркулеру. Именно из него охлажденный поток воздуха поступает к дроссельной заслонке. При небольшой производительности турбины (прибавка в мощности и моменте около 30–40%) форсунки и топливный насос в большинстве случаев остаются стандартными, но если их производительности не хватает, то эти детали заменяются другими.

Также меняют свечи на такие, у которых низкое калильное число. Модернизации подвергаются системы смазки и охлаждения, ведь на ось турбины необходимо подавать масло и охлаждающую жидкость.

Если планируется существенно повысить мощность при установке турбины с большим давлением наддува, уменьшают степень сжатия мотора путем установки многослойных прокладок под головку блока и/или другой шатунно-поршневой группы (зачастую кованой).

Процесс монтажа компрессора во многом схож с вышеприведенным, но есть и отличия: выпускная система может оставаться вообще нетронутой, ведь компрессор приводится в действие шкивом от коленчатого вала двигателя; в V-образных моторах компрессор зачастую устанавливается в развал между цилиндрами вместо штатного впускного коллектора.

Следует отметить, что монтаж турбины занимает больше времени, нежели компрессора. Нередко установка турбокита требует около недели, в то время как компрессора 1–2 дня. Причина? Зачастую компрессорные киты разрабатываются под конкретный мотор, и в комплекте имеется все необходимое, вплоть до наименьших хомутов. К тому же мотор с компрессором впоследствии быстрее и легче настраивать, нежели турбированный, так как в комплекте обычно уже идет программное обеспечение для блока управления. Остается лишь скорректировать некоторые параметры.

А вот для турбины работа с управляющей электроникой является самой главной. Блок управления двигателем перепрограммируется либо заменяется (обычно с турбокитом уже поставляется программа со всеми нужными параметрами). Но его настройка требует много времени и сил, ведь надо согласовать множество параметров работы мотора в каждом диапазоне оборотов. И это могут выполнить лишь высококвалифицированные специалисты

 
#15
#Дифференциал #повышенного #трения (#LSD)

Дифференциал повышенного трения (Limited-slip Differential, LSD)

В стандартном дифференциале повышенного трения (далее L.S.D.), когда одно из колес теряет сцепление с дорогой, вся мощность и крутящий момент передается именно на это колесо, тогда как другое бездействует. Основная идея блокировки дифференциала - распределение мощности между колесами, когда одно из колес "теряет дорогу".

В Nissan Terrano/Patrol устанавливается дифференциал повышенного трения (опция) с использованием фрикционных дисков для снижения взаимного проскальзывания колес. Данная конструкция не обеспечивает 100% блокировки дифференциала заднего моста.
Поэтому наличие в мосту L.S.D. в спорте не даст сильных преимуществ (тут без принудительной/ручной блокировки не обойтись). Однако для большинства владельцев внедорожников наличие данного диффа существенно поможет в бездорожье и езде по заснеженному, скользкому и песчаному покрытию т.к. существенно улучшает сцепление с дорого.

Принцип действия:
Основа - взаимодействие дисков и колец. Диск крепится к шестерне полуоси, а кольцо на корпусе дифференциала. Если шестерня полуоси крутится со скоростью, иной чем, скорость корпуса дифференциала (он прикреплен к зубчатому венцу ведущей шестерни) то возникает вращение дисков между кольцами. Принцип трения в связке диск-кольцо-масло и положен в основу действия LSD.
При потере сцепления одного колеса с дорогой возникает разница скоростей между дисками и кольцами. Давление прижимает фрикционные диски к кольцам, и как следствие увеличивается сопротивление скольжению.

Как определить стоит ли L.S.D. в Вашем мосте?
1. по модельному коду.
2. опытным путем:

Все далее описанные способы производятся при нейтральном положении трансмиссии.
Для начала оторвите от земли любым доступным способом оба колеса моста. Если при вращении одного колеса моста, другое крутится в обратную сторону - в мосте ничего нет.

Либо второе. L.S.D., основанный на принципе дисков сцепления, достаточно быстро изнашивается и мост начинает работать просто как с открытым дифференциалом. В этом случае определить стоит ли там что-нибудь (особенно, если Вы приобрели подержанный автомобиль) можно только при вскрытии. Единственным утешением (учитывая что регулировкой моста толком никто не занимается) может служить то, что вам не придется тратится на покупку специального масла для мостов с L.S.D..
Если другое колесо крутится в ту же сторону - Вы счастливый обладатель дифференциала повышенного трения.

Применяемые масла и сроки замены
Учитывая особенность конструкции, данный дифф требует масло определенного типа. Если Вы зальете обычную трансмиссионку, то можете в дальнейшем продолжать ее лить т.к. Ваш мост стал обычным мостом и смена масло на специальное тут не поможет (вопрос времени конечно...).
Производитель рекомендует производить замену масла через каждые 20-40 тыс. км., в зависимости от условий эксплуатации.





 
#17
Возможности #чип #тюннинг.

Chip-tuning оказывает различное влияние на атмосферный и турбированный двигатели. Рассмотрим.

Атмосферный двигатель
В настоящее время автомобили с атмосферными моторами очень распространены, но положительный результат можно достичь только на агрегатах с наличием электронного блока управления (ECU). При этом регулировка увеличивает мощность и крутящий момент на 5–10 %. Это относится и к атмосферным дизельным моторам.

Необходимо отметить, что chip tuning на силовых агрегатах либо с моноинжектором, либо с инжектором КЕ-Jetronic не производится. Данные по этим моторам находятся в таблице (таблица по двигателям).

Турбированные двигатели
На автомобильном рынке также очень популярны турбированные двигатели. Chip tuning такого мотора позволяет повысить мощность и крутящий момент примерно на 20–25%.

По сравнению с атмосферными моторами турбированные обладают большей мощность за счет турбонагнетателя, который позволяют сжигать большее количество топлива.

К примеру, мощность силового агрегата 1,8Т (модели заводов Audi/VW/Sкoda) можно увеличить со 150 лошадиных сил до 195 лошадиных сил только за счет перепрограммирования электронного блока управления (ECU). А если к этому дополнительно произвести установку воздушного фильтра с «нулевым» сопротивлением и прямоточного глушителя, то можно с легкостью превысить отметку в 200 лошадиных сил.

Дизельные двигатели, оснащенные турбонаддувом, с таким же результатом подвергаются chip-tuning, как и турбированные бензиновые. При этом конечный результат выходит не хуже, а вот требования к качеству горючего предъявляются высокие. Стоит отметить, что chip-tuning турбированного дизеля позволяет увеличить мощность на 20–25 %, а крутящий момент до 30%.

 
#18
Отличие #biturbo от #twinturbo.

Твин-турбо и БиТурбо-это лишь разные коммерческие названия системы наддува, состоящей из 2-х турбин.

Название не отображает схему работы турбин (параллельное или последовательное(секвентальное)

Например, Мицубиши 3000 VR-4 имеет название TwinTurbo, там V6 и две турбины, каждая из которых питается от своих 3 цилиндров и дует в общий коллектор. Аналогично на Ауди S4 2.7, но там уже в названии BiTurbo. Аналогично на Мазере Джибли или Кватропорте.
На Тойоте Супра TwinTurbo рядная шестерка, и турбины там работают в хитром порядке, включаясь и выключаясь с помощью специальных перепускных клапанов (последовательно-параллельная схема)
На Субару В4-там две турбины, но работают они секвентально: на низких оборотах работает одна-маленькая-турбина, на высоких к ней подключается вторая-большая.

Би-турбо (biturbo) — система турбонаддува, состоящая из двух последовательно включаемых в работу турбин. В такой системе применяют 2 турбины, одну маленького размера другую большого, сделано это потому, что маленькая турбина раскручивается значительно быстрее, и вступает в работу первой, затем, при достижении более высоких оборотов мотора, раскручивается вторая, большая турбина, и добавляет значительно больший воздушный заряд. Таким образом прежде всего минимизируется лаг, образуется достаточно ровная разгонная характеристика автомобиля без рывка, свойственного большим турбинам, и достигается возможность использовать большие турбины на двигателях устанавливаемых в автомобилях предназначенных не только для езды по гоночным трассам, но и по городским дорогам, где возможность крутить мотор постоянно есть не всегда, а получить больше мощности с мотора небольшого объема имеет смысл, по каким либо причинам, например связанным с законодательством по налогам данной страны на литраж мотора. Системы би-турбо весьма дороги, и по этому их установка, как правило в серийном производстве, производится на автомобили высокого класса, типа MASERATI или ASTON MARTIN (там компрессоры).

Такая система может быть установлена как на двигатель V6, каждая турбина будет висеть на своей головке по выхлопу, впуск общий, так и на рядном моторе например рядная 4-ка, в этом случае турбины можно включить по выхлопу как параллельно, 2 цилиндра на одну, 2 на другую, так и последовательно — сначала большая турбина, потом маленькая. Встречаются так же варианты, когда к маленькой турбине подходит выхлоп только с 2-х цилиндров, а к большой соответственно с 2-х оставшихся, и с выхода малой турбины.

Твин-турбо (twinturbo) — в данной системе в отличии от системы би-турбо, основной задачей является не снизить лаг, а добиться большей производительности по прокачиваемому воздуху либо большего давления наддува. Производительность по прокачиваемому воздуху необходима, в случаях когда мотор работая на высоких оборотах, потребляет воздух больше, чем турбина способна обеспечить, таким образом возможно падение давления наддува. В системах Twinturbo применяются две одинаковые турбины.

Соответственно производительность такой системы в 2 раза больше чем системы состоящей из одной турбины, при этом если применить 2 небольших турбины которые по производительности будут равны одной большой, то можно достигнуть эффекта снижения лага, при идентичной производительности. Существуют так же ситуации, когда производительности имеющихся в наличии больших турбин, оказывается недостаточно, например при построении мотора дрэгстера, тогда так же используется комбинация из 2-х турбин. Данная схема как и вариант biturbo может работать как на двигателях с V образным развалом головок, так и на рядных двигателях. Варианты включения турбин такие же как и в битурбо.

Существуют так же системы состоящие из 3-х и более одинаковых турбин, результат преследуется тот же что и в twinturbo. Такие системы в гражданском применении как правило не имеют распространения, и применяются как правило, для построения мощных спортивных моторов, для автомобилей участвующих в драгрэйсинге.
В современных турбированных двигателях (в частности RRS V8 дизель) турбины имеют изменяемую геометрию крыльчаток. Это минимизирует проблему турбоямы и даёт высокий потенциал турбонаддува уже на самых низких оборотах коленвала двигателя. Кроме того это добавляет экономию топлива.



 

Slim

SUPER MODERATOR
#19
зря только все в одну кучу. не комильфо
можно было бы отдельными темами куда-нибудь в ФАК или еще куда
всё нет времени посидеть, порешать
сделаем в ФАК только попозже, дел тьма, спать забываю =((
есть у модераторов полномочия, может кто-то и сделает
 
#20
Что такое #гидроудар?

Гидроударом называется резкое возрастание давления в одном из цилиндров двигателя (многократно превышающее допустимое), происходящее в результате попадания в него значительного количества жидкости, которая в отличие от подготовленной топливной смеси практически не сжимается. Причем для дизельных двигателей (а они в сравнении с бензиновыми имеют меньшую камеру сгорания и существенно более высокую компрессию) для возникновения гидроудара нужно наличие гораздо меньшего количества воды, попавшей в цилиндр двигателя.

• Последствия гидроудара

В цилиндре с жидкостью при движении поршня вверх давление нарастает очень стремительно. Максимальное давление при этом многократно превышает допустимое. Сила давления, приложенная к поршню, воздействует через палец на шатун, вызывая в нем большие напряжения сжатия. С другой стороны, инерция вращающихся частей двигателя (а при включенной передаче и инерция движущегося автомобиля) дополнительно пытается провернуть коленвал, еще больше увеличивая нагрузку на шатун.

Если силы инерции, действующие на детали двигателя, невелики, то шатун, поршень и палец могут выдержать приложенную нагрузку (это бывает крайне редко). Но чаще всего стержень шатуна сжимается и изгибается (теряет устойчивость). Вследствие чего расстояние меду центрами верхней и нижней головок шатуна уменьшается, то есть шатун укорачивается. Если силы инерции значительны, то и шатун деформируется сильно. При этом поршень проходит через верхнюю мертвую точку, коленчатый вал продолжает вращаться и поршень начинает двигаться вниз. Если шатун изогнулся очень сильно, то он может упереться в стенку цилиндра - и двигатель заклинит. Случай не самый страшный - достаточно будет заменить шатун, поршень и палец. Гораздо хуже, если при сильно сокращенном расстоянии между отверстиями головок шатуна двигатель продолжает вращаться. В таком случае при приближении к нижней мертвой точке поршень своей юбкой садится на противовесы коленчатого вала. Далее следует разрушение поршня, а возможно, и обрыв шатуна (его обломок может пробить боковую стенку цилиндра).

Гидроудар сказывается и на других деталях двигателя. Так, под действием высокого давления деформируется головка блока цилиндров (очень редко). В момент резкой остановки двигателя за счет инерции газораспределительного механизма страдает цепь или ремень привода. При этом значительные нагрузки испытывает и натяжитель цепи (ремня). А посему все вышеперечисленные детали и узлы тоже могут потребовать замены.

Коленчатый вал, напротив, страдает довольно редко. И только при очень больших масштабах разрушения других деталей он может деформироваться или ломаться. Кстати, при разборке двигателя очень легко определить, что явилось причиной поломки шатуна и заклинивания коленчатого вала - гидроудар или масляное голодание. При масляном голодании разрушение шатуна происходит в результате перегрева и "прихватывания" вкладышей коленчатого вала. В этом случае на нижней головке шатуна хорошо видны "цвета побежалости" и задиры. При гидроударе же нижняя головка шатуна остается совершенно нормальной.

• Что делать при остановке двигателя ?

Так как же быть, если при пересечении лужи, брода, болота двигатель вдруг резко остановился? Ни в коем случае не стоит пытаться сразу же запустить двигатель. Для начала следует открыть крышку воздушного фильтра. Если под крышкой обнаружится вода, то практически со стопроцентной уверенностью можно говорить о том, что причиной остановки двигателя стал гидроудар. В этом случае необходимо вывернуть свечи и попробовать вручную провернуть двигатель. Допустим, вам удается сделать полный оборот коленчатого вала двигателя и вы чувствуете, что поршень не касается противовесов коленчатого вала. Это значит, что шатун не деформирован или деформирован незначительно. Теперь можно попробовать прокрутить двигатель стартером. Но внимание! Если слышен стук - немедленно остановите двигатель и прекратите все попытки его запустить. Ведь если находящийся в аварийном состоянии двигатель запустится, то даже после непродолжительной работы за счет больших нагрузок, возникающих от касания поршнем противовесов, произойдет их разрушение, ведущее к гораздо более тяжелым последствиям. Если же стука нет, то, продув цилиндры, можно заворачивать свечи и пытаться запустить двигатель. Но поскольку существует вероятность деформации головки двигателя, то "тянуть на базу" следует с крайней осторожностью, тщательно контролируя температуру охлаждающей жидкости и давление масла. В дальнейшем двигатель следует подвергнуть частичной разборке для контроля деталей: вероятнее всего, потребуется замена шатуна и поршня, а также фрезеровка плоскости головки блока цилиндров.

А вот с дизельным двигателем все гораздо сложнее. Из-за отсутствия быстро снимаемых свечей зажигания продуть цилиндр от воды довольно трудно. Да и страдает дизель, как правило, гораздо сильнее. Поэтому, сняв крышку фильтра и убедившись в наличии под ней воды, незадачливому "подводнику" остается только буксировать автомобиль в сервисный центр.

Ремонт двигателя, пережившего гидроудар, мало отличается от обычного капитального ремонта. Хуже, если оборванный шатун пробьет блок цилиндров, но и в этом случае, как показывает опыт, блок также может быть отремонтирован.

Большое значение имеет и то, сколько времени простоял автомобиль после гидроудара. Ведь под действием воды в цилиндрах двигателя начинается интенсивная коррозия, и уже через месяц может потребоваться расточка блока.

• Шноркель

Шноркелем изначально называлась трубка, используемая ныряльщиками для того, чтобы осуществлять дыхание под водой. В автомобиль эта деталь перекочевала после проведения тестовых испытаний в армейской технике (использовалась для движения бронетехники по дну рек или например для скрытного движения подводных лодок на небольшой глубине). Используется для того, чтобы значительно увеличить глубину преодолеваемых водных преград (стандартный заборник на "сухопутных крейсерах" расположен под передним крылом на высоте примерно 80 см - 1 м в зависимости от размера колес). Шноркеля выпускаются тюнинговыми фирмами, народными умельцами, а также, в редких случаях, производителями автомобилей.
 
Статус
В этой теме нельзя размещать новые ответы.